AFICT2009 in Thailand

PIAX: A Ubiquitous Service Platform based on Overlay Network Technologies

Susumu Takeuchi
National Institute of Information and Communications Technology (NICT), Japan
Background

• Pervasive/Ubiquitous Computing Environment

- In-door observation
- Observe Real-time environment
- Probe-car network
- Watching School Children
- Environment Measurement
- Home Entertainments
- Network Robots
- Web Services
- Automation Services in the Real-world
- Distribution Systems
- Traffic Controls
- Deliveries
- Community Services
- PANs
- Real-time Environment Measurement
- Probe-car network
- Watching School Children
- Environment Measurement
- Home Entertainments
- Network Robots
- Web Services
- Automation Services in the Real-world
- Distribution Systems
- Traffic Controls
- Deliveries
- Community Services
- PANs
Interoperability of Pervasive Systems

• Vertical Integration
 – Specialized, Closed System
 – Enormous cost for wide-area coverage
 – Centralized, uniformed

• Horizontal Integration
 – No limit the purpose, Open System
 – Cooperation for wide-area coverage
 – Distributed, diversified
Vertical & Horizontal Integration

- Large-scale Web Services
- Traditional Web
- Mash-up / Web Services
- Peer-to-Peer Loose Syndicate

Vertical

Horizontal
PIAX: P2P Interactive Agent eXtensions

- Java-based platform that integrates:
 - Multiple P2P overlay discovery functions
 - Mobile agent features

Variants ubiquitous applications

- Multi-Overlay
- Discovery Messaging

Flexible Computing by Mobile Agents

Scalable Messaging by P2P Overlay

Navigation
Reputation Sharing
Shopping Assistant
Recommendation
Streaming

http://www.piax.org/

Sensors
Contents
Devices
Users
Profiles
Reputations

NiCT
Software Structure of PIAX

Flexible and loose coupling of different services

Agent library

- File sharing
- Location-dependent contents
- Sensor handling
- RDF DB

Scalable handling of enormous data and nodes

Concealing heterogeneity and complexity
The core overlay network of PIAX is based on Skip Graph that can support range-query.

- Each peer has ONE key in the original Skip Graph, but Multi-key Skip Graph that can handle multiple keys in each peer is proposed and implemented in PIAX.

![Diagram showing Skip Graph with membership vectors and keys.](image)

Membership vector

- **Level 0**
 - 000
 - 100
 - 010
 - 001
 - 110
 - 111

Key

- 1
- 2
- 3
- 4
- 5
- 6

Forward query for key range of [1:3] from peer ‘110’
• Handle a ‘range’ as a key in Skip Graph

• Usage examples:
 – Discover a provider that covers a certain place as a service area
 – Connect and federate intra-resources among the different organizations (e.g., databases, sensor networks)
Geographical Key-value Store

- RKSG’s range-query enables distributed peers to manage location-dependent contents
Summarized Features of PIAX

- **Flexibility**
 - Different kinds of services can be cooperated

- **Scalability**
 - Enormous peers and data can be managed

- **Tolerance**
 - Heterogeneous protocols and devices can be federated

Large-scale intelligent services with heterogeneous devices can be realized over wide-area
Large-scale & Wide-area Data Sharing

1 million peers
100 billion entries

Large-scale Key-value Store
(Each node manages a certain region)

Node discovery by Range-key Skip Graph

Discover peers that manages the required area

Retrieve location-dependent contents form the matched peers

Map area

User Terminal

Weather Sensor Map

User Movement Histories
Ex.2) Recommendation for Shopping Centers

- Distributed Online Services
- Recommendation Know-how, Sales Analysis
- Sensing data
 - Rain Sensor
 - Temp. Sensor
 - Wind Sensor etc.

- User terminal
- Digital signage
- Terminals, Displays

- Direction to the Shopkeepers

- Sales Database
 - Recommendation Algorithms
 - Analytic Algorithms etc.

- Discoveries over Overlay Networks
 - Reduce costs for startup, operation

- Timely, friendly Interface

- Robots/Sensors

- Robots
- Detection Sensors
- RFID Reader
- Camera
- Laser-Range Finder

- Detect position of the products
- Behavior, Position of the Customer

©ATR
Ex. 3) Sensor Network Federation

Wide-area and large-scale applications
Facility management Weather observation
Disaster management
Traffic control

Federation among heterogeneous sensor networks require loosely-coupled framework
Conclusion

• PIAX: A P2P Agent Platform
 – Integrate P2P structured overlay network with mobile agent platform
 • Coupling services flexibility and scalability with concealing heterogeneity and complexity of networks and devices
 – Examples:
 • Large-scale and wide-area data sharing
 • Various resources federation for intelligent services

➢ Please visit http://www.piax.org/en/ for more information.